酵素活性条件の検討

1. 目的
体内にあるデンプン分解酵素であるアミラーゼを様々な条件において反応させ、酵素が活性になる条件を検討した。

2. 方法
2.1 試薬の調製
(1) 緩衝液の調製
最適 pH の測定用として、酸性成分はクエン酸、塩基性成分はリン酸水素ナトリウムを混合した pH=3.0，4.0，4.5，5.0，6.0，7.0，8.0 の緩衝溶液を調製した。
(2) 基質溶液の調製
1.0mg/ml のデンプン溶液を pH=3~8 の緩衝でメスアップして調製した。
(3) 酵素溶液の調製
1.0mg/ml のアミラーゼ溶液を pH=3~8 の緩衝液でメスアップして調製した。
(4) 反応停止液、ヨウ素溶液の調製
反応停止液として 1.0mol/l の Na_CO_3 を調製した。また 1.0mol/l のヨウ素ヨウ化カリウム水溶液（以下、ヨウ素溶液）も調製した。
2.2 反応の検討
(1) 反応時間の検討
酵素溶液（pH=4.5）と基質溶液（pH=4.5）を 20 ℃において反応させて一定の時間になったら反応停止液を加えて反応を停止させて、ヨウ素溶液で発色させた。
(2) 最適 pH の検討
酵素溶液（pH=3~8）と基質溶液（pH=3~8）を反応させ 10 分後に反応停止液を加えて反応を停止させて、ヨウ素溶液で発色させた。
(3) 最適温度の検討
酵素溶液（pH=4.5）と基質溶液（pH=4.5）を 30，40，50，55，60，65 ℃において 10 分間反応させた後反応停止液を加えて反応を停止させて、ヨウ素溶液で発色させた。
2.3 吸光度測定
反応させてできた溶液を分光光度計（SHIMADZU UV-mini 1240）で波長 420nm で測定した。

3. 結果

<table>
<thead>
<tr>
<th>反応時間[分]</th>
<th>吸光度</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>0.49</td>
</tr>
<tr>
<td>20</td>
<td>0.23</td>
</tr>
<tr>
<td>30</td>
<td>0.07</td>
</tr>
<tr>
<td>40</td>
<td>0.06</td>
</tr>
<tr>
<td>80</td>
<td>0.06</td>
</tr>
</tbody>
</table>

図 1 反応時間と吸光度の関係
表 2 pH と吸光度の関係

<table>
<thead>
<tr>
<th>pH</th>
<th>吸光度</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.38</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
</tr>
<tr>
<td>4.5</td>
<td>0.10</td>
</tr>
<tr>
<td>5</td>
<td>0.27</td>
</tr>
<tr>
<td>6</td>
<td>0.84</td>
</tr>
<tr>
<td>7</td>
<td>1.23</td>
</tr>
<tr>
<td>8</td>
<td>1.30</td>
</tr>
</tbody>
</table>

図 2 pH と吸光度の関係

表 3 反応温度と吸光度の関係

<table>
<thead>
<tr>
<th>反応温度[℃]</th>
<th>吸光度</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3.14</td>
</tr>
<tr>
<td>40</td>
<td>3.07</td>
</tr>
<tr>
<td>50</td>
<td>3.24</td>
</tr>
<tr>
<td>55</td>
<td>3.24</td>
</tr>
<tr>
<td>60</td>
<td>3.24</td>
</tr>
<tr>
<td>65</td>
<td>3.24</td>
</tr>
</tbody>
</table>

図 3 反応温度と吸光度の関係

反応時間：30 分以下 pH：4.5 付近 反応温度：30~40℃ という条件がよい。

4. 考察

(1) 最適条件について
反応時間は 30 分以下、pH は 4.5、温度は 30~40℃ という条件で、一番反応が見られた。
このことから、アミラーゼが体内の状態に近い条件で、30 分以下という比較的短時間で反応すると判断できる。
(2) 反応停止液の役割について
反応停止液は pH をアルカリ性に変えることで酵素を変性させる役割をしていると考えられる。
(3) ヨウ素による発色の原理について
デンプン溶液にヨウ素溶液を加えると、デンプン分子の螺旋構造の内部にヨウ素の分子が入り込んで発色する。吸光度が少ないのは、発色が少なく、デンプンが少ないことを示す。
(4) 温度、pH の変化による活性の変化
温度が変わると、酵素の分子中の立体構造を保っている水素結合などが熱運動により切断してしまうので活性が変化すると考えられる。
pH による影響としては、酵素中に含まれる分子がもつ側鎖の電荷が pH の変動により変化するので活性が変化すると考えられる。

5. 参考文献
これからのバイオインフォマティクスのためのバイオ実験入門 高木利久 羊土社